\qquad

Order of Operations-Guided Notes

- Target Objective: Order of Operations with Positive Integers

I. Order of Operations

A. Vocabulary

$\overline{\text { operations in a math problem }}$

- The order of operations tells you the order in which you should go about solving problems like these:
Ex) $3+5 \times 6$
Ex) $10 \div 2+4 \times 3$
Ex) $5 \mathrm{x}(3+4)-3$
B. What is the order?
* You should always solve math problems in the following order:

Parenthesis - (also called grouping symbols)

Exponents

Multiplication OR Division - (whichever comes first)

Addition OR Subtraction - (whichever comes first)

C. Parentheses

- The parentheses symbol looks like this \qquad .
Ex) $7+(9+4)$
- Parenthesis can also look like this \qquad . We call these

Ex) $3 \times[7+1]$

- You ALWAYS want to work from the inside parenthesis to the outside parenthesis.

Ex) $3+[4-(2 \bullet 1)]$

Examples

Directions: Simplify each expression.
Ex) $7+(8 \div 4)$
Ex) $3(7+4)$
Ex) $3(20-14)+(9 \bullet 1)$
Ex) $2+[5-(3 \bullet 1)]$
Ex) $[(5+2)-2] x 6$
D. Defining Powers \& Exponents

- We say this is " \qquad to the \qquad
\qquad "
- The exponent tells you how many times you should multiply the \qquad by
\qquad .

Directions: Simplify each expression.
Ex) $2^{0}=$
Ex) $2^{1}=$
Ex) $2^{2}=$
Ex) $2^{3}=$

1. Squared \& Cubed

- Any integer that has 2 for an exponent is said to be " \qquad ."
- Any integer that has 3 for an exponent is said to be " \qquad ."

Directions: Please tell me whether each power is "squared" or "cubed".
Ex) 4^{2}
Ex) 4^{3}
Ex) 8^{2}
Ex) 8^{3}

2. Zero as An Exponent

- When any integer has 0 as an exponent, it is ALWAYS equal to \qquad .
Ex) $4^{0}=$
Ex) $12^{0}=$

3. One as An Exponent

- Any integer with 1 as an exponent is ALWAYS equal to \qquad .
Ex) $10^{1}=$
Ex) $3^{1}=$
Ex) $31^{1}=$

4. Any Power w/a Base of One

- When the integer 1 has an exponent (any exponent), it is ALWAYS equal to \qquad .
Ex) $1^{4}=$
Ex) $1^{1}=$
Ex) $1^{9}=$

Examples
Directions: Simplify each expression.
Ex) $4(1+1)^{2}$
Ex) $49-(3 \bullet 2)^{2}$
Ex) $5(5-2)^{2}$
Ex) $70-3-(4 \div 2)^{2}$
Ex) $\left[10-2^{2}\right]+\left[4^{2}-10\right]$
Ex) $(5+2)^{2}-2+\left[4^{2}+3\right]$

E. Multiplication AND Division

- Multiply and divide in order from \qquad to \qquad .
- This does not mean that you always multiply first before you divide. You should multiply or divide depending on whichever operation comes first as you work from left to right.

Examples
Directions: Simplify each expression.
Ex) $7 \div 1 \times 3$
Ex) $3^{2} \mathrm{x} 4 \div 1$
Ex) $2^{2} \bullet(4 \mathrm{x} 3)$
Ex) $27 \div(3 \times 1)^{2}$
Ex) $6 \div 2[1+(1 \bullet 2)]$
Ex) $2\left[(1 \bullet 2)^{3}-6\right]+(11-6)$

F. Addition AND Subtraction

- Add and subtract in order from \qquad to \qquad .
*This does not mean that you always add first before you subtract. You should add or subtract depending on whichever operation comes first as you work from left to right.

Examples

Directions: Simplify each expression.
Ex) $3 \times 5-8 \div 4+6$
Ex) $3^{2} \div 3+4 \times 4-2$
Ex) $6+2(4+1)^{2}$
Ex) $1+(3 \bullet 2) \times 2-2^{3}$
Ex) $[4(2+1)]+6 \bullet 3^{2}$

G. Order of Operations Involving Fractions

- Whenever you see an order of operations problem involving fractions like this:

$$
\frac{(2+3)^{2}+3}{2+15 \div 3}
$$

1) solve everything in the numerator (or top) as if it is its own PEMDAS problem
2) solve everything in the denominator (or bottom) as if its own PEMDAS problem
3) and then divide out to find the answer
Ex) $\frac{16+24}{30-22}$
Ex) $\frac{(3 \bullet 3)-4}{12 \div 4+1^{4}}$

H. Order of Operation Problems

Directions: Simplify each expression.
Ex) $4+3 \times 5$
Ex) $10+4 \div 2^{2}$

$$
\text { Ex) } 4-1 \bullet 2+(6 \div 3)
$$

Ex) $(6-3)^{2} \bullet 4 \div 9-1$

Ex) $13-4(3+2) \div 2^{2}$

$$
\text { Ex) } \frac{2(3-1)^{2}}{1+1} \times 3+3
$$

Ex) $10^{2} \div[9-(2 \bullet 2)]+1(4)$

